
Research Notes

Arm & Hammer Animal and Food Production

AviBrom Confirmed Effective in Commercial and University Poultry Processing Trials.

Two research trials—one commercial and one university—evaluated and compared the antimicrobial efficacy of AviBrom[™] when applied in poultry processing. Both studies confirmed the efficacy of AviBrom as a postharvest intervention to significantly reduce *Salmonella* and *Campylobacter*.

COMMERCIAL TRIAL¹ DESIGN

In a commercial turkey processing plant a new carcass wash cabinet was designed and installed to provide a mechanical washing action. Immediately following the cabinet there was a dip tank that was installed to apply an acidifier. For the experimental design turkey hens were processed in a typical daily fashion, with no alterations to normal operations.

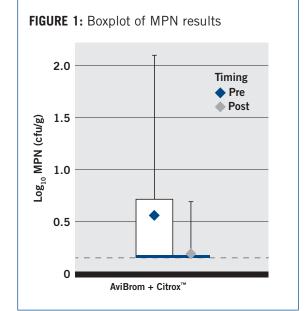
- Just prior to the AviBrom spray cabinet one of the wings was cut off the carcass in a randomized fashion. This sample served as the control or non-treated paired sample.
- Post Citrox[™] dip, the opposite wing was cut off the same carcass. This sample served as the treated paired sample. Each sample consisted of a composite of 4 wings.
- These samples were processed following FSIS standard method for rinse procedures utilizing neutralizing buffered peptone water (nBPW).

Three groups were treated with AviBrom at 300 ppm in the spray cabinet + Citrox (1.5 pH) Dip, 16 samples per group for a total of 48 samples. Three groups were treated with AviBrom 300 ppm in the final wash cabinet, 10 samples per group, for a total of 30 samples.

TABLE 1	SUMMARY OF LOG ₁₀ TRANSFORMED SAMPLE RESULTS							
Metric	TREATMENT	PRE- TREATMENT	POST- TREATMENT	REDUCTION	SD OF REDUCTION	<i>P</i> -VALUE		
APC	AVIBROM + CITROX	4.69	3.48	-1.21	0.85	<0.01		
EB	AVIBROM + CITROX	3.85	2.73	-1.11	0.47	<0.01		
MPNs	AVIBROM + CITROX	0.57	0.21	-0.36	0.60	0.01		

RESULTS

• Statistically significant reductions were seen for Aerobic Plate Counts (APCs), *Enterobacteriaceae* (EBs) and Most Probable Numbers (MPNs) when using AviBrom + Citrox (Table 1, Table 2 and Figure 1).


When looking at MPN, it is important to note that the levels were low in the pretreatment group, which makes it difficult to show a significant difference posttreatment. However, Table 2 shows that AviBrom[™] improved the % Limit of Quantification (LOQ), even when levels were low in the pretreatment group.

UNIVERSITY TRIAL² STUDY DESIGN

- The study was conducted at the University of Arkansas Pilot Processing Plant in accordance with standard processing procedures
- Antimicrobial treatments were applied in multiple locations including the use of a spray cabinet (post-pick), post-evisceration dip (10 seconds), chiller (60-minute chill time), and post-chill dip (10 seconds) to test the antimicrobial products. Treatment groups are shown in Table 3.
- Prior to any antimicrobial treatment application, control birds were processed and sampled to evaluate the total microbial load going into the system at the post-pick station.

STUDY RESULTS

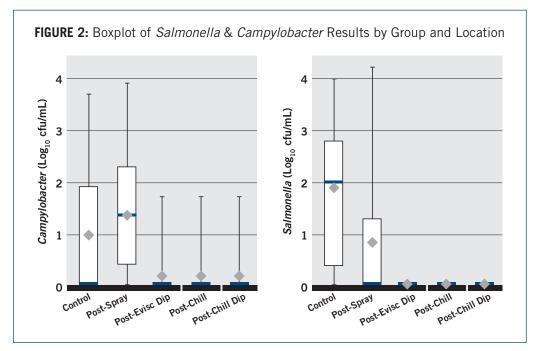

• AviBrom reduced *Salmonella* (Figure 2 and Table 4) throughout processing. Data shows that there are significant treatment effects throughout processing. Overall, the use of AviBrom reduced *Salmonella* load when used in poultry processing.

TABLE 2	PERCENT OF MPN RESULTS BELOW LOQ			
TREATMENT	RESULTS BELOW LOQ (%)			
IREAIMENT	PRE	POST		
AVIBROM + CITROX	54.2	83.3		
PRE-IOBW POST Final Wash	80.0	86.7		

• Likewise, *Campylobacter* is also reduced by the addition of AviBrom (Figure 2 and Table 4). There were also significant reductions in prevalence from Control to Post-Spray with treatment resulting in a decrease in prevalence from 70% to 30%.

TABLE 3	TREATMENT GROUPS			
GROUP	STATION	ANTIMICROBIAL TREATMENT		
GROUP 1	PRE-POST-PICK-SPRAY	CONTROL		
GROUP 1	POST-PICK SPRAY	AVIBROM (400 PPM)		
GROUP 1	POST-EVISCERATION DIP	AVIBROM (400 PPM)		
GROUP 1	CHILL	PAA (75 PPM)		
GROUP 1	POST-CHILL DIP	AVIBROM (400 PPM) + CITROX (1.5 PH)		

Campylobacter and *Salmonella* microbial recovery from poultry carcasses were reduced when AviBrom[™] was added to poultry processing.

TABLE 4	SUMMARY OF <i>CAMPYLOBACTER</i> AND <i>SALMONELLA</i> RESULTS FOR ALL GROUPS AND LOCATIONS							
	SAMPLES	CAMPYLOBACTER			SALMONELLA			
LOCATION		MEAN	SD	PREVALENCE (%)	MEAN	SD	PREVALENCE (%)	
CONTROL	10	1.01	1.41	40	1.86	1.49	70	
POST-SPRAY	10	1.86	1.51	70	0.81	1.44	30	
POST-EVISC DIP	10	0.17	0.54	10	0.00	0.00	0	
POST-CHILL	10	0.17	0.54	10	0.00	0.00	0	
POST-CHILL DIP	10	0.17	0.54	10	0.00	0.00	0	

SUMMARY

AviBrom was effective in significantly reducing *Salmonella* and *Campylobacter* throughout poultry processing intervention. These effects are likely bactericidal—which has been shown in additional research studies³—and do not generate a viable but non-culturable response as seen with other antimicrobial compounds, like Peracetic Acid (PAA)⁴. Given the other benefits of AviBrom—such as being less odorous and corrosive to production equipment—AviBrom is a potent alternative antimicrobial treatment for poultry processing and production when implemented as a component of a multi-hurdle approach⁵.

AHfoodchain.com

1 Passport Food Safety Solutions Commercial Trial, 2019. Data on File.

- 2 Feye KM, Bokengroger C, McReynolds J, Owens CM, Ricke SC. Evaluation of AviBrom for the reduction of foodborne pathogens in a pilot poultry processing plant. University of Arkansas, 2019. Data on file.
- 3 Gage LP, Nixon B, Bodine K. Peracetic acid (PAA) induced viable but non-culturable Salmonella in poultry meat. IAFP 2015.
- 4 Álvarez-Ordóñez A, Prieto M, Bernardo A, Hill C, López M. The Acid Tolerance Response of Salmonella spp.: An adaptive strategy to survive in stressful

environments prevailing in foods and the host. Food Research International 2012;45:482-492.

5 Liimatta et al., 2010. Degradation testing of concrete. Data on file.

© 2020 Church & Dwight Co., Inc. ARM & HAMMER and its logo are trademarks of Church & Dwight Co., Inc. AviBrom is a trademark of Albemarle Corporation and is licensed to Church & Dwight Co., Inc. Citrox is a trademark of Citrox Biosciences Ltd. AVI3516-0320